Yannick Delbecque — Département de mathématiques, Cégep de St-Laurent 201-NYA — Calcul différentiel — Automne 2013

Ancien examen 4

Question 1

Dériver les fonctions suivantes.

a)
$$f(x) = \frac{e^{-x^3}}{\cos(x^2)\ln(2)}$$

b)
$$f(x) = \ln(\log_{\pi}(x))e^{\pi^x}$$

c)
$$f(x) = \sin(\sin(\pi^x)) - 3\sec(e^{x/\pi}) + \arccos(e^{\pi})$$

d)
$$f(x) = \frac{\arccos(\sin(x))}{\cos(x^2)}$$

e)
$$f(x) = \csc^5\left(\frac{x^2}{2}\right) + \sqrt{\frac{\cot(2x)}{2}}$$

Question 2

Faire le tableau de variation de la fonction

$$f(x) = x - \ln\left(x^2 + 1\right).$$

le domaine, les valeurs critiques, les minimums, les maximums, les points d'inflexion et esquisser la fonction sachant qu'il n'y a pas d'asymptotes!

Question 3

Déterminer la pente de la tangente en $x = -\frac{\pi}{2}$ du graphe de la fonction

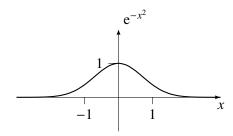
$$f(x) = \sec\left(\frac{x}{2}\right)\sin\left(\frac{x}{3}\right).$$

Question 4

Sachant que la dérive de tan(x) est $sec^2(x)$, utiliser l'identité $tan^2(x) + 1 = sec^2(x)$ pour déterminer la dérivée de sec(x).

Question 5

Voici le graphe de l'équation $y = e^{-x^2}$:



Déterminer l'aire du rectangle inscrit entre la courbe et l'axe des x et symétrique par rapport à l'axe des y (dont la base va de -x à x) qui a la plus grande surface.

Solutions

Question 1

a)
$$\frac{-3\ln(2)x^2e^{-x^3}\cos(x^2) + 2\ln(2)xe^{-x^3}\sin(x^2)}{\cos^2(x^2)\ln(2)^2}$$

b)
$$f'(x) = \frac{1}{\log_{\pi}(x)} \frac{1}{x \ln(\pi)} e^{\pi^x} + \ln(\log_{\pi}(x)) e^{\pi^x} \pi^x \ln(\pi)$$

c)
$$f'(x) = \cos(\sin(\pi^x))\cos(\pi^x)\pi^x\ln(\pi) - \frac{3}{\pi}\sec(e^{x/\pi})\tan(e^{x/\pi})e^{x/\pi}$$

d)
$$f'(x) = \frac{\frac{-\cos(x)\cos(x^2)}{\sin(x)\sqrt{\sin^2(x)-1}} + 2x\arccos(\sin(x))\sin(x^2)}{\cos^2(x^2)}$$

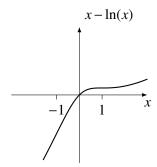
e)
$$f'(x) = -5x \operatorname{cosec}^5\left(\frac{x^2}{2}\right) \operatorname{cotan}\left(\frac{x^2}{2}\right) - \frac{1}{\sqrt{2}} \frac{\operatorname{cosec}^2(2x)}{\sqrt{\operatorname{cotan}(2x)}}$$

Question 2

Le domaine de f est \mathbb{R} : f est définie quand $\ln(x^2 + 1)$ est défini, ce qui est toujours le cas car $x^2 + 1 > 0$ pour tout x.

$$f'(x) = \frac{(x-1)^2}{x^2+1} \qquad f''(x) = \frac{2(x+1)(x-1)}{(x^2+1)^2}$$

La seule valeur critique de f' est x = 1, où f'(x) = 0. Les valeurs critiques de f''(x) sont x = 1 et x = -1.



Question 3

La dérivée de la fonction est

$$f'(x) = \frac{1}{2}\sec\left(\frac{x}{2}\right)\tan\left(\frac{x}{2}\right)\sin\left(\frac{x}{3}\right) + \frac{1}{3}\cos\left(\frac{x}{3}\right)\sec\left(\frac{x}{2}\right).$$

En $x = -\pi/2$, on obtient

$$f'\left(-\frac{\pi}{2}\right) = \frac{1}{2}\sec\left(-\frac{\pi}{4}\right)\tan\left(-\frac{\pi}{4}\right)\sin\left(-\frac{\pi}{6}\right) + \frac{1}{3}\cos\left(-\frac{\pi}{6}\right)\sec\left(-\frac{\pi}{4}\right)$$

$$= \frac{1}{2}\left(\frac{2}{\sqrt{2}}\right)(-1)\left(-\frac{1}{2}\right) + \frac{1}{3}\frac{\sqrt{3}}{2}\frac{2}{\sqrt{2}}$$

$$= \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{3\sqrt{2}}$$

$$e^{x/\pi} = \frac{3 + 2\sqrt{3}}{6\sqrt{2}}$$

(Rappel : pour évaluer sec(x), évaluer $\frac{1}{cos(x)}$)

Question 4

Dériver l'identité $tan^2(x) + 1 = sec^2(x)$:

$$2\tan(x)\sec^2(x) = 2\sec(x)(\sec(x))'.$$

En isolant $(\sec(x))'$, on obtient

$$\left(\sec(x)\right)' = \frac{2\tan(x)\sec^2(x)}{2\sec(x)} = \sec(x)\tan(x).$$

Autre possibilité:

$$\tan^{2}(x) + 1 = \sec^{2}(x)$$

$$\sec(x) = \sqrt{\tan^{2}(x) + 1}$$

$$(\sec(x))' = \left(\sqrt{\tan^{2}(x) + 1}\right)'$$

$$= \frac{1}{2\sqrt{\tan^{2}(x) + 1}} \left(2\tan(x)\sec^{2}(x)\right)$$

$$= \frac{1}{\sqrt{\tan^{2}(x) + 1}} \left(\tan(x)\sec^{2}(x)\right)$$

$$= \frac{1}{\sec(x)} \left(\tan(x)\sec^{2}(x)\right)$$

$$= \sec(x)\tan(x)$$

Question 5

$$A = 2xe^{-x^2}.$$

$$A' = 2e^{-x^2} - 4x^2e^{-x^2} = 2e^{-x^2}(1 - 2x^2).$$

$$A' = 0 \text{ si } (1 - 2x^2) = 0 \text{ ssi } x = \pm \frac{1}{\sqrt{2}}.$$

$$A'' = 2e^{-x^2}(-2x) + e^{-x^2}(-4x) = -8xe^{-x^2}.$$
En $x = \frac{1}{\sqrt{2}}, A'' = -\frac{8}{\sqrt{2}}(+) < 0$ et en $x = -\frac{1}{\sqrt{2}}, A'' = \frac{8}{\sqrt{2}}(+) > 0$. On a donc un maximum quand $x = \frac{1}{\sqrt{2}}$. L'aire maximum est donc $2\frac{e^{-1/2}}{\sqrt{2}}$.